Thermal Simulation
Simulate thermal behavior of compute hardware in orbital environments, including eclipse cycles and varying solar flux.Status: Early Access — Request API key
Overview
Space presents unique thermal challenges:- No convection — Heat can only be rejected via radiation
- Eclipse cycles — Periodic loss of solar heating
- Solar flux variation — Changes with orbit and season
- Internal heat — Compute generates significant waste heat
Quick Start
Parameters
Orbit specification. Options:
LEO-400toLEO-600— Low Earth Orbit at specified altitudeMEO-2000toMEO-20000— Medium Earth OrbitGEO— Geostationary orbit- Custom:
{"altitude_km": 550, "inclination_deg": 53}
Internal heat generation in watts
Radiator surface area in square meters
Internal thermal mass in kg (affects transient response)
Radiator emissivity (0-1)
Solar absorptivity (0-1)
Response
Thermal Profiles
LEO Thermal Cycle
Operating Limits
| Component | Min (C) | Max (C) |
|---|---|---|
| GPU/TPU | 0 | 85 |
| CPU | -20 | 100 |
| Memory | -40 | 85 |
| Storage | -40 | 70 |
| Battery | 0 | 45 |
Advanced: Time-Series Simulation
Get detailed thermal behavior over multiple orbits:Design Considerations
Radiator sizing
Radiator sizing
Larger radiators = lower steady-state temperature but more mass and cost.
Rule of thumb: 0.1-0.2 m² per 100W dissipation for LEO.
Eclipse survival
Eclipse survival
Ensure minimum temperature stays above component limits.
May require heaters or thermal mass.
Hot case analysis
Hot case analysis
Consider worst-case solar flux (perihelion + beta angle = 0).
Add 10-15% margin to maximum temperature.